Random homogenisation of a highly oscillatory singular potential
نویسندگان
چکیده
In this article, we consider the problem of homogenising the linear heat equation perturbed by a rapidly oscillating random potential. We consider the situation where the space-time scaling of the potential’s oscillations is not given by the diffusion scaling that leaves the heat equation invariant. Instead, we treat the case where spatial oscillations are much faster than temporal oscillations. Under suitable scaling of the amplitude of the potential, we prove convergence to a deterministic heat equation with constant potential, thus completing the results previously obtained in [PP12].
منابع مشابه
Corrector theory for elliptic equations in random media with singular Green’s function. Application to random boundaries
We consider the problem of the random fluctuations in the solutions to elliptic PDEs with highly oscillatory random coefficients. In our setting, as the correlation length of the fluctuations tends to zero, the heterogeneous solution converges to a deterministic solution obtained by averaging. When the Green’s function to the unperturbed operator is sufficiently singular (i.e., not square integ...
متن کاملStochastic Homogenisation of Singularly Perturbed Integral Functionals
We study the relative impact of small-scale random inhomogeneities and singular perturbations in nonlinear elasticity. More precisely, we analyse the asymptotic behaviour of the energy functionals Fε(ω)(u) = ∫ A ( f ( ω, x ε ,Du ) + ε|∆u| ) dx, where ω is a random parameter and ε > 0 denotes a typical length-scale associated with the variations in the elastic properties of the body. For f stati...
متن کاملStochastic Homogenisation of Singularly Perturbed Integral Functionals
We study the relative impact of small-scale random inhomogeneities and singular perturbations in nonlinear elasticity. More precisely, we analyse the asymptotic behaviour of the energy functionals Fε(ω)(u) = ∫ A ( f ( ω, x ε ,Du ) + ε|∆u| ) dx, where ω is a random parameter and ε > 0 denotes a typical length-scale associated with the variations in the elastic properties of the body. For f stati...
متن کاملAnalytical Solution for Two-Dimensional Coupled Thermoelastodynamics in a Cylinder
An infinitely long hollow cylinder containing isotropic linear elastic material is considered under the effect of arbitrary boundary stress and thermal condition. The two-dimensional coupled thermoelastodynamic PDEs are specified based on equations of motion and energy equation, which are uncoupled using Nowacki potential functions. The Laplace integral transform and Bessel-Fourier series are u...
متن کاملMore about measures and Jacobians of singular random matrices
In this work are studied the Jacobians of certain singular transformations and the corresponding measures which support the jacobian computations.
متن کامل